
How LLMs Work, Explained Without Math
Posted by on under

I'm sure you agree that it has become impossible to ignore Generative AI
(GenAI), as we are constantly bombarded with mainstream news about
Large Language Models (LLMs). Very likely you have tried ChatGPT,
maybe even keep it open all the time as an assistant.

A basic question I think a lot of people have about the GenAI revolution
is where does the apparent intelligence these models have come from.
In this article, I'm going to attempt to explain in simple terms and without
using advanced math how generative text models work, to help you think
about them as computer algorithms and not as magic.

What Does An LLM Do?
I'll begin by clearing a big misunderstanding people have regarding how
Large Language Models work. The assumption that most people make is
that these models can answer questions or chat with you, but in reality
all they can do is take some text you provide as input and guess what
the next word (or more accurately, the next token) is going to be.

Let's start to unravel the mystery of LLMs from the tokens.

Tokens
A token is the basic unit of text understood by the LLM. It is convenient
to think of tokens as words, but for the LLM the goal is to encode text as
efficiently as possible, so in many cases tokens represent sequences of
characters that are shorter or longer than whole words. Punctuation
symbols and spaces are also represented as tokens, either individually
or grouped with other characters.

The complete list of tokens used by an LLM are said to be the LLM's
vocabulary, since it can be used to express any possible text. The byte
pair encoding (BPE) algorithm is commonly used by LLMs to generate a
token vocabulary given an input dataset. Just so that you have some

miguelgrinberg.com

Miguel Grinberg May 5, 2024 AI

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 1/20

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math
https://en.wikipedia.org/wiki/Generative_artificial_intelligence
https://en.wikipedia.org/wiki/Large_language_model
https://chat.openai.com/
https://en.wikipedia.org/wiki/Byte_pair_encoding
https://en.wikipedia.org/wiki/Byte_pair_encoding
https://blog.miguelgrinberg.com/index

rough idea of scale, the GPT-2 language model, which is open source
and can be studied in detail, uses a vocabulary of 50,257 tokens.

Each token in an LLM's vocabulary is given a unique identifier, usually a
number. The LLM uses a tokenizer to convert between regular text given
as a string and an equivalent sequence of tokens, given as a list of token
numbers. If you are familiar with Python and want to play with tokens,
you can install the tiktoken package from OpenAI:

$ pip install tiktoken

Then try this in a Python prompt:

>>> import tiktoken

>>> encoding = tiktoken.encoding_for_model("gpt-2")

>>> encoding.encode("The quick brown fox jumps over the lazy dog.")

[464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3290, 13]

>>> encoding.decode([464, 2068, 7586, 21831, 18045, 625, 262, 16931, 3

'The quick brown fox jumps over the lazy dog.'

>>> encoding.decode([464])

'The'

>>> encoding.decode([2068])

' quick'

>>> encoding.decode([13])

'.'

You can see in this experiment that for the GPT-2 language model token
464 represents the word "The", and token 2068 represents the word "
quick", including a leading space. This model uses token 13 for the
period.

Because tokens are determined algorithmically, you may find strange
things, such as these three variants of the word "the", all encoded as
different tokens by GPT-2:

>>> encoding.encode('The')

[464]

>>> encoding.encode('the')

[1169]

>>> encoding.encode(' the')

[262]

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 2/20

https://github.com/openai/gpt-2

The BPE algorithm doesn't always map entire words to tokens. In fact,
words that are less frequently used do not get to be their own token and
have to be encoded with multiple tokens. Here is an example of a word
that this model encodes with two tokens:

>>> encoding.encode("Payment")

[19197, 434]

>>> encoding.decode([19197])

'Pay'

>>> encoding.decode([434])

'ment'

Next Token Predictions
As I stated above, given some text, a language model makes predictions
about what token will follow right after. If it helps to see this with Python
pseudo-code, here is how you could run one of these models to get
predictions for the next token:

predictions = get_token_predictions(['The', ' quick', ' brown', ' fox'

The function gets a list of input tokens, which are encoded from the
prompt provided by the user. In this example I'm assuming words are all
individual tokens. To keep things simple I'm using the textual
representation of each token, but as you've seen before in reality each
token will be passed to the model as a number.

The returned value of this function is a data structure that assigns each
token in the vocabulary a probability to follow the input text. If this was
based on GPT-2, the return value of the function would be a list of 50,257
floating point numbers, each predicting a probability that the
corresponding token will come next.

In the example above you could imagine that a well trained language
model will give the token "jumps" a high probability to follow the partial
phrase "The quick brown fox" that I used as prompt. Once again
assuming a model trained appropriately, you could also imagine that the
probability of a random word such as "potato" continuing this phrase is
going to be much lower and close to 0.

To be able to produce reasonable predictions, the language model has to
go through a training process. During training, it is presented with lots

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 3/20

https://en.wikipedia.org/wiki/The_quick_brown_fox_jumps_over_the_lazy_dog

and lots of text to learn from. At the end of the training, the model is able
to calculate next token probabilities for a given token sequence using
data structures that it has built using all the text that it saw in training.

Is this different from what you expected? I hope this is starting to look
less magical now.

Generating Long Text Sequences
Since the model can only predict what the next token is going to be, the
only way to make it generate complete sentences is to run the model
multiple times in a loop. With each loop iteration a new token is
generated, chosen from the returned probabilities. This token is then
added to the input that is given to the model on the next iteration of the
loop, and this continues until sufficient text has been generated.

Let's look at a more complete Python pseudo-code showing how this
would work:

def generate_text(prompt, num_tokens, hyperparameters):

 tokens = tokenize(prompt)

 for i in range(num_tokens):

 predictions = get_token_predictions(tokens)

 next_token = select_next_token(predictions, hyperparameters)

 tokens.append(next_token)

 return ''.join(tokens)

The generate_text() function takes a user prompt as an argument.
This could be, for example, a question.

The tokenize() helper function converts the prompt to an equivalent
list of tokens, using tiktoken or a similar library. Inside the for-loop, the
get_token_predictions() function is where the AI model is called to
get the probabilitles for the next token, as in the previous example.

The job of the select_next_token() function is to take the next token
probabilities (or predictions) and pick the best token to continue the
input sequence. The function could just pick the token with the highest
probability, which in machine learning is called a greedy selection. Better
yet, it can pick a token using a random number generator that honors the
probabilities returned by the model, and in that way add some variety to
the generated text. This will also make the model produce different
responses if given the same prompt multiple times.

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 4/20

To make the token selection process even more flexible, the probabilities
returned by the LLM can be modified using hyperparameters, which are
passed to the text generation function as arguments. The
hyperparameters allow you to control the "greediness" of the token
selection process. If you have used LLMs, you are likely familiar with the
temperature hyperparameter. With a higher temperature, the token
probabilities are flattened out, and this augments the chances of less
likely tokens to be selected, with the end result of making the generated
text look more creative or unusual. You may have also used two other
hyperparameters called top_p and top_k , which control how many of
the highest probable tokens are considered for selection.

Once a token has been selected, the loop iterates and now the model is
given an input that includes the new token at the end, and one more
token is generated to follow it. The num_tokens argument controls how
many iterations to run the loop for, or in other words, how much text to
generate. The generated text can (and often does) end mid-sentence,
because the LLM has no concept of sentences or paragraphs, since it
just works on one token at a time. To prevent the generated text from
ending in the middle of a sentence, we could consider the num_tokens
argument as a maximum instead of an exact number of tokens to
generate, and in that case we could stop the loop when a period token is
generated.

If you've reached this point and understood everything then
congratulations, you now know how LLMs work at a high level. Are you
interested in more details? In the next section I'll get a bit more technical,
while still doing my best to avoid referencing the math that supports this
technology, which is quite advanced.

Model Training
Unfortunately, discussing how a model is trained is actually difficult
without using math. What I'm going to do is start by showing you a very
simple training approach.

Given that the task is to predict tokens that follow other tokens, a simple
way to train a model is to get all the pairs of consecutive tokens that
appear in the training dataset and build a table of probabilities with
them.

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 5/20

Let's do this with a short vocabulary and dataset. Let's say the model's
vocabulary has the following five tokens:

['I', 'you', 'like', 'apples', 'bananas']

To keep this example short and simple, I'm not going to consider spaces
or punctuation symbols as tokens.

Let's use a training dataset that is composed of three sentences:

I like apples
I like bananas
you like bananas

We can build a 5x5 table and in each cell write how many times the
token representing the row of the cell is followed by the token
representing the column. Here is the table built from the three sentences
in the dataset:

- I you like apples bananas

I 2

you 1

like 1 2

apples

bananas

Hopefully this is clear. The dataset has two instances of "I like", one
instance of "you like", one instance of "like apples" and two of "like
bananas".

Now that we know how many times each pair of tokens appeared in the
training dataset, we can calculate the probabilities of each token
following each other. To do this, we convert the numbers in each row to
probabilities. For example, token "like" in the middle row of the table was
followed once by "apples" and twice by "bananas". That means that
"apples" follows "like" 33.3% of the time, and "bananas" follows it the
remaining 66.7%.

Here is the complete table with all the probabilities calculated. Empty
cells have a probability of 0%.

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 6/20

- I you like apples bananas

I 100%

you 100%

like 33.3% 66.7%

apples 25% 25% 25% 25%

bananas 25% 25% 25% 25%

The rows for "I", "you" and "like" are easy to calculate, but "apples" and
"bananas" present a problem because they have no data at all, since the
dataset does not have any examples with these tokens being followed
by other tokens. Here we have a "hole" in our training, so to make sure
that the model produces a prediction even when lacking training, I have
decided to split the probabilities for a follow-up token for "apples" and
"bananas" evenly across the other four possible tokens, which could
obviously generate strange results, but at least the model will not get
stuck when it reaches one of these two tokens.

The problem of holes in training data is actually important. In real LLMs
the training datasets are very large, so you would not find training holes
that are so obvious as in my tiny example above. But smaller, more
difficult to detect holes due to low coverage in the training data do exist
and are fairly common. The quality of the token predictions the LLM
makes in these poorly trained areas can be bad, but often in ways that
are difficult to perceive. This is one of the reasons LLMs can sometimes
hallucinate, which happens when the generated text reads well, but
contains factual errors or inconsistencies.

Using the probabilities table above, you may now imagine how an
implementation of the get_token_predictions() function would work.
In Python pseudo-code it would be something like this:

def get_token_predictions(input_tokens):

 last_token = input_tokens[-1]

 return probabilities_table[last_token]

Simpler than expected, right? The function accepts a sequence of
tokens, which come from the user prompt. It takes the last token in the
sequence, and returns the row in the probabilities table that corresponds
to that token.

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 7/20

https://en.wikipedia.org/wiki/Hallucination_(artificial_intelligence)

If you were to call this function with ['you', 'like'] as input tokens,
for example, the function would return the row for "like", which gives the
token "apples" a 33.3% chance of continuing the sentence, and the token
"bananas" the other 66.7%. With these probabilities, the
select_next_token() function shown above should choose "apples"
one out of three times.

When the "apples" token is selected as a continuation of "you like", the
sentence "you like apples" will be formed. This is an original sentence
that did not exist in the training dataset, yet it is perfectly reasonable.
Hopefully you are starting to get an idea of how these models can come
up with what appears to be original ideas or concepts, just by reusing
patterns and stitching together different bits of what they learned in
training.

The Context Window
The approach I took in the previous section to train my mini-language
model is called a Markov chain.

An issue with this technique is that only one token (the last of the input)
is used to make a prediction. Any text that appears before that last token
doesn't have any influence when choosing how to continue, so we can
say that the context window of this solution is equal to one token, which
is very small. With such a small context window the model constantly
"forgets" its line of thought and jumps from one word to the next without
much consistency.

To improve the model's predictions a larger probabilities table can be
constructed. To use a context window of two tokens, additional table
rows would have to be added with rows that represent all possible
sequences of two tokens. With the five tokens I used in the example
there would be 25 new rows in the probabilities table each for a pair of
tokens, added to the 5 single-token rows that are already there. The
model would have to be trained again, this time looking at groups of
three tokens in addition to the pairs. Then in each loop iteration of the
get_token_predictions() function the last two tokens from the input
would be used when available, to find the corresponding row in the larger
probabilities table.

But a context window of 2 tokens is still insufficient. For the generated
text to be consistent with itself and make at least some basic sense, a

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 8/20

https://en.wikipedia.org/wiki/Markov_chain

much larger context window is needed. Without a large enough context it
is impossible for newly generated tokens to relate to concepts or ideas
expressed in previous tokens. So what can we do? Increasing the
context window to 3 tokens would add 125 additional rows to the
probabilities table, and the quality would still be very poor. How large do
we need to make the context window?

The open source GPT-2 model from OpenAI uses a context window of
1024 tokens. To be able to implement a context window of this size
using Markov chains, each row of the probabilities table would have to
represent a sequence that is between 1 and 1024 tokens long. Using the
above example vocabulary of 5 tokens, there are 5 possible
sequences that are 1024 tokens long. How many table rows are required
to represent this? I did the calculation in a Python session (scroll to the
right to see the complete number):

>>> pow(5, 1024)

5562684646268003457725581793331010160548039951155829576383318542218011

That is a lot of rows! And this is only a portion of the table, since we
would also need sequences that are 1023 tokens long, 1022, etc., all the
way to 1, because we want to make sure shorter sequences can also be
handled when not enough tokens are available in the input. Markov
chains are fun to work with, but they do have a big scalability problem.

And a context window of 1024 tokens isn't even that great anymore. With
GPT-3, the context window was increased to 2048 tokens, then increased
to 4096 in GPT-3.5. GPT-4 started with 8192 tokens, later got increased
to 32K, and then again to 128K (that's right, 128,000 tokens!). Models
with 1M or larger context windows are starting to appear now, allowing
for much better consistency and recall when they make token
predictions.

In conclusion, Markov chains allow us to think about the problem of text
generation in the right way, but they have big issues that prevent us from
considering them as a viable solution.

From Markov Chains to Neural Networks
Obviously we have to forget the idea of having a table of probabilities,
since a table for a reasonable context window would require an
impossibly large amount of RAM. What we can do is replace the table

1024

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 9/20

with a function that returns an approximation of what the token
probabilities would be, generated algorithmically instead of stored as a
big table. This is actually something that neural networks can do well.

A neural network is a special type of function that takes some inputs,
performs some calculations on them, and returns an output. For a
language model the inputs are the tokens that represent the prompt, and
the output is the list of predicted probabilities for the next token.

I said neural networks are "special" functions. What makes them special
is that in addition to the function logic, the calculations they perform on
the inputs are controlled by a number of externally defined parameters.
Initially, the parameters of the network are not known, and as a result, the
function produces an output that is completely useless. The training
process for the neural network consists in finding the parameters that
make the function perform the best when evaluated on the data from the
training dataset, with the assumption that if the function works well with
the training data it will work comparably well with other data.

During the training process, the parameters are iteratively adjusted in
small increments using an algorithm called backpropagation which is
heavy on math, so I won't discuss in this article. With each adjustment,
the predictions of the neural network are expected to become a tiny bit
better. After an update to the parameters, the network is evaluated again
against the training dataset, and the results inform the next round of
adjustments. This process continues until the function performs good
next token predictions on the training dataset.

To help you have an idea of the scale at which neural networks work,
consider that the GPT-2 model has about 1.5 billion parameters, and
GPT-3 increased the parameter count to 175 billion. GPT-4 is said to have
about 1.76 trillion parameters. Training neural networks at this scale with
current generation hardware takes a very long time, usually weeks or
months.

What is interesting is that because there are so many parameters, all
calculated through a lengthy iterative process without human
assistance, it is difficult to understand how a model works. A trained
LLM is like a black box that is extremely difficult to debug, because most
of the "thinking" of the model is hidden in the parameters. Even those
who trained it have trouble explaining its inner workings.

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 10/20

https://en.wikipedia.org/wiki/Backpropagation

Layers, Transformers and Attention
You may be curious to know what mysterious calculations happen inside
the neural network function that can, with the help of well tuned
parameters, take a list of input tokens and somehow output reasonable
probabilities for the token that follows.

A neural network is configured to perform a chain of operations, each
called a layer. The first layer receives the inputs, and performs some type
of transformation on them. The transformed inputs enter the next layer
and are transformed once again. This continues until the data reaches
the final layer and is transformed one last time, generating the output, or
prediction.

Machine learning experts come up with different types of layers that
perform mathematical transformations on the input data, and they also
figure out ways to organize and group layers so that they achieve a
desired result. Some layers are of a general purpose, while others are
designed to work on a specific type of input data, such as images or as
in the case of LLMs, on tokenized text.

The neural network architecture that is the most popular today for text
generation in large language models is called the Transformer. LLMs
that use this design are said to be GPTs, or Generative Pre-Trained
Transformers.

The distinctive characteristic of transformer models is a layer
calculation they perform called Attention, that allows them to derive
relationships and patterns between tokens that are in the context
window, which are then reflected in the resulting probabilities for the
next token.

The Attention mechanism was initially used in language translators, as a
way to find which tokens in an input sequence are the most important to
extract its meaning. This mechanism gives modern translators the ability
to "understand" a sentence at a basic level, by focusing on (or driving
"attention" to) the important words or tokens.

Do LLMs Have Intelligence?
By now you may be starting to form an opinion on wether LLMs show
some form of intelligence in the way they generate text.

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 11/20

https://en.wikipedia.org/wiki/Transformer_(deep_learning_architecture)
https://en.wikipedia.org/wiki/Generative_pre-trained_transformer
https://en.wikipedia.org/wiki/Generative_pre-trained_transformer
https://en.wikipedia.org/wiki/Attention_(machine_learning)

I personally do not see LLMs as having an ability to reason or come up
with original thoughts, but that does not mean to say they're useless.
Thanks to the clever calculations they perform on the tokens that are in
the context window, LLMs are able to pick up on patterns that exist in the
user prompt and match them to similar patterns learned during training.
The text they generate is formed from bits and pieces of training data for
the most part, but the way in which they stitch words (tokens, really)
together is highly sophisticated, in many cases producing results that
feel original and are useful.

Given the propensity of LLMs to hallucinate, I wouldn't trust any workflow
in which the LLM produces output that goes straight to end users
without verification by a human.

Will the larger LLMs that are going to appear in the following months or
years achieve anything that resembles true intelligence? I feel this isn't
going to happen with the GPT architecture due to its many limitations,
but who knows, maybe with some future innovations we'll get there.

The End
Thank you for staying with me until the end! I hope I have picked your
interested enough for you to decide to continue learning, and eventually
facing all that scary math that you cannot avoid if you want to
understand every detail. In that case, I can't recommend Andrej
Karpathy's Neural Networks: Zero to Hero video series enough.

Become a Patron!
Hello, and thank you for visiting my blog! If you enjoyed this article,
please consider supporting my work on this blog on Patreon!

Share this post:

Hacker News Reddit Twitter LinkedIn Facebook

E-Mail

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 12/20

https://karpathy.ai/zero-to-hero.html
https://patreon.com/miguelgrinberg
https://patreon.com/miguelgrinberg
https://patreon.com/miguelgrinberg
https://news.ycombinator.com/submitlink?u=https%3A//blog.miguelgrinberg.com/post/how-llms-work-explained-without-math&t=How%20LLMs%20Work%2C%20Explained%20Without%20Math
https://reddit.com/submit/?url=https%3A//blog.miguelgrinberg.com/post/how-llms-work-explained-without-math&resubmit=true&title=How%20LLMs%20Work,%20Explained%20Without%20Math
https://twitter.com/intent/tweet/?text=How%20LLMs%20Work%2C%20Explained%20Without%20Math&url=https%3A//blog.miguelgrinberg.com/post/how-llms-work-explained-without-math
https://www.linkedin.com/shareArticle?mini=true&url=https%3A//blog.miguelgrinberg.com/post/how-llms-work-explained-without-math&title=How%20LLMs%20Work%2C%20Explained%20Without%20Math&summary=How%20LLMs%20Work%2C%20Explained%20Without%20Math&source=https%3A//blog.miguelgrinberg.com/post/how-llms-work-explained-without-math
https://facebook.com/sharer/sharer.php?u=https%3A//blog.miguelgrinberg.com/post/how-llms-work-explained-without-math
mailto:?subject=How%20LLMs%20Work%2C%20Explained%20Without%20Math&body=https%3A//blog.miguelgrinberg.com/post/how-llms-work-explained-without-math

21 comments

#1 Vasco said 4 months ago

Nice article!

On the conclusion about are "Do LLMs Have Inteligence?" is
more about what human inteligence is. Assuming we agree that
we are made out of matter, one could also say the following
sentence about humans:

"I personally do not see Humans as having an ability to reason or
come up with original thoughts, but that does not mean to say
they're useless. Thanks to the clever calculations they perform
(on the tokens) that are in the context window, Humans are able
to pick up on patterns that exist in the user prompt and match
them to similar patterns learned during training. The text they
generate is formed from bits and pieces of training data for the
most part, but the way in which they stitch words together is
highly sophisticated, in many cases producing results that feel
original and useful."

#2 Rodri said 4 months ago

A very interesting reading. Thank you for the hard work!

#3 Miguel Grinberg said 4 months ago

@Vasco: with all due respect, what you are saying makes
absolutely no sense.

#4 Jay said 4 months ago

Beautiful and elegant and very useful summary! Well done!

#5 Rabs said 4 months ago

Hey, Miguel. Very nice reading. I wonder how all the token
prediction are, in fact, related with the conversational aspects of
the main LLM models, such as GPT-3 or 4. When you use a

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 13/20

question as a prompt and the model answers you in a very
similar way that a human would, are they just completing your
question (string of words) with tokens that look like an answer to
a question because they are trained with questions and answers
a lot, or are there other things happening behind the curtains,
such as secondary algorithms (not the token prediction ones) to
make the output look like a real conversation?

#6 Miguel Grinberg said 4 months ago

@Rabs: The model produces a human-like response because the
training dataset has lots and lots of examples of human Q&A.
There are no "other things" as you call them, except maybe some
added logic to stop at the end of a sentence or paragraph, which
the model itself does not really have any knowledge of since it
works token by token.

#7 edo said 4 months ago

I have a feeling that very soon I will leave Gemini at work to
answer questions about the environment, and I will go on a trip
right away :-)

#8 RENATO said 4 months ago

Congratulations Miguel, as always you are very didactic in your
approaches. Today you took off the magic cloak of LLM engines
and explained how training is the key to success.

#9 Eight said 4 months ago

Would love to see you talk about Knowledge Graphs in the same
way, especially since they can "solve" some of the issues like
hallucinations / bias.

#10 Miguel Grinberg said 4 months ago

@Eight: I assume you mean RAG. I don't really find that much
interesting. Maybe it does help reduce hallucinations to some
extent, but it does not eliminate them. I think RAG is useful to

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 14/20

expand the knowledge of the LLM with private data, or with
events that occurred after the training cutoff date, but it does not
make LLMs more (or less) intelligent, and given that
hallucinations are still possible it is still risky to use them in
customer or end user facing workflows.

#11 Mark Alex Maidique said 4 months ago

This is very helpful and insightful. Thank you so much!

#12 Curious Reader said 4 months ago

This is a fantastic article but something isn't quite clicking for
me. GPT-4 scored within the top 10% on the verbal section of the
SAT and can score above average on tests of math and
analytical reasoning. If you give GPT-4 a passage it has never
seen before it can answer abstract questions about it such as
"given the passage, which of these statements would the author
most likely agree with" or "which of these, if true would disprove
the authors core argument" better than 90% of college bound
seniors. How is that possible by just probablistically predicting
the next token in the sequence? There's a gap in my
understanding here.

#13 Miguel Grinberg said 4 months ago

@Curious: what's difficult to understand is the large scale at
which these models work. When you say that the model is
presented with text it has never seen before, how do you know
what the model has seen? The training datasets aren't public, so
given a random text we cannot really know if the model has seen
something close enough, and chances are that it has. Passing
tests or answering general knowledge questions is possible
because there's lots of test exercises and Q&As in the training
set, so the model can find a similar problem and even if it has
different quantities and/or variable or names it can generate the
correct response thanks to the attention mechanism, which does
a sort of advanced pattern matching.

By all means the way LLMs work is impressive. But it isn't magic.
The model produces its answers one token at a time as I explain

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 15/20

in this article, without forming an idea of the answer first like we
would do, and without a real understanding beyond token
probabilitites.

#14 Saurav said 4 months ago

Hi Miguel. Fantastic article as always. Asking a question here
connecting LLMs with Flask, given your contributions to the
whole Flask community. I see a lot of LLM inference APIs using
async servers like FastAPI. Wanted to know your thoughts on
this. Do you think Flask is a better choice for APIs that server AI
models too? Would love a blog or a tutorial from you focusing on
that, as serving AI models has become very relevant these days.

#15 Miguel Grinberg said 4 months ago

@Saurav: You typically have the option to use a sync or async
API to send queries to LLMs, so which option you take depends
on your needs. If you use Flask you can use synchronous calls, if
you use FastAPI you can go with the async version. The decision
to use sync or async should not be influenced by the LLM, you
should use the standard considerations to decide which
approach is best for your web application.

#16 Victor said 4 months ago

Thanks, this was amazingly insightful for a backend engineer

#17 Miguel Grinberg said 4 months ago

@Victor: Just a "backend engineer", huh?

#18 Jian said 3 months ago

Deep to the point, Plain and easy to understand, Good article!

#19 Yoursbest said 3 months ago

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 16/20

Given the propensity of LLMs to hallucinate, I wouldn't
trust any workflow in which the LLM produces output
that goes straight to end users without verification by a
human.

I cannot agree more.

#20 OttoGPT said 2 months ago

Dear Miguel, thank you very much for this great article and
comments. I am curious to get your opinion on the question if
we could see the "reasoning" as a result of human interaction.
The sence of an output will be embodied by a human as long as
we are interacting as humans wich these LLM's. In your example
"I like banana" could have different meaning for you and me. Are
you eating it every day or earn money with selling bananas.
Technically we still have a probability output but the way we
interact and interpret the answer is creating reasoning on us.
This is why it feels intelligent and it is also in some way.
Intelligence is usually something that needs ro be embodied in
something or somebody, in that case the interacting human.
Maybe this is a more philosophical approach. BR

#21 Miguel Grinberg said 2 months ago

@OttoGPT: I'm not sure I follow what you are saying. For a
human brain of course every idea is relative and has a meaning
that depends on personal experience. For an LLM all there is is a
large collection of examples from where to pick tokens from,
using probabilities and a random number generator. The output
of an LLM can be useful, but it is still a computer running a
computer algorithm.

Leave a Comment
Name

«« « » »»

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 17/20

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math/page/1#comments
https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math/page/0#comments
https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math/page/0#comments
https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math/page/0#comments

Email

Comment

Captcha

Submit

reCAPTCHA
I'm not a robot

Privacy - Terms

MicroPython for the Raspberry Pi Pico W

If you like my MicroPython tutorial series on this blog, you may also
like my MicroPython for the Raspberry Pi Pico W book.

Click here to get this Book!

About Miguel

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 18/20

https://www.google.com/intl/en/policies/privacy/
https://www.google.com/intl/en/policies/terms/
https://amzn.to/3Ugn6Ca
https://blog.miguelgrinberg.com/post/micropython-and-the-internet-of-things-part-i-welcome
https://amzn.to/3Ugn6Ca
https://amzn.to/3Ugn6Ca

Welcome to my blog!

I'm a software engineer and technical writer, currently
living in Drogheda, Ireland.

You can also find me on Twitter, Mastodon, Github,
LinkedIn, YouTube, Facebook and Patreon.

Thank you for visiting!

Categories

 AI 2
 AWS 1

 Arduino 7
 Authentication 10

 Blog 1
 C++ 5

 CSS 1
 Cloud 10

 Database 22

 Docker 5

 Filmmaking 6
 Flask 126

 Games 1
 Heroku 1

 IoT 8
 JavaScript 35

 MicroPython 9

 Microdot 1
 Microservices 2
 Movie Reviews 5
 OpenStack 1

 Personal 3
 Photography 7
 Product Reviews 2
 Programming 186

 Project Management 1

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 19/20

https://twitter.com/miguelgrinberg
https://mstdn.social/@miguelgrinberg
https://github.com/miguelgrinberg
http://www.linkedin.com/in/miguelgrinberg
https://youtube.com/miguelgrinberg
https://www.facebook.com/miguelgrinbergblog
https://patreon.com/miguelgrinberg
https://blog.miguelgrinberg.com/category/AI/feed
https://blog.miguelgrinberg.com/category/AI/feed
https://blog.miguelgrinberg.com/category/AWS/feed
https://blog.miguelgrinberg.com/category/AWS/feed
https://blog.miguelgrinberg.com/category/Arduino/feed
https://blog.miguelgrinberg.com/category/Arduino/feed
https://blog.miguelgrinberg.com/category/Authentication/feed
https://blog.miguelgrinberg.com/category/Authentication/feed
https://blog.miguelgrinberg.com/category/Blog/feed
https://blog.miguelgrinberg.com/category/Blog/feed
https://blog.miguelgrinberg.com/category/C++/feed
https://blog.miguelgrinberg.com/category/C++/feed
https://blog.miguelgrinberg.com/category/CSS/feed
https://blog.miguelgrinberg.com/category/CSS/feed
https://blog.miguelgrinberg.com/category/Cloud/feed
https://blog.miguelgrinberg.com/category/Cloud/feed
https://blog.miguelgrinberg.com/category/Database/feed
https://blog.miguelgrinberg.com/category/Database/feed
https://blog.miguelgrinberg.com/category/Docker/feed
https://blog.miguelgrinberg.com/category/Docker/feed
https://blog.miguelgrinberg.com/category/Filmmaking/feed
https://blog.miguelgrinberg.com/category/Filmmaking/feed
https://blog.miguelgrinberg.com/category/Flask/feed
https://blog.miguelgrinberg.com/category/Flask/feed
https://blog.miguelgrinberg.com/category/Games/feed
https://blog.miguelgrinberg.com/category/Games/feed
https://blog.miguelgrinberg.com/category/Heroku/feed
https://blog.miguelgrinberg.com/category/Heroku/feed
https://blog.miguelgrinberg.com/category/IoT/feed
https://blog.miguelgrinberg.com/category/IoT/feed
https://blog.miguelgrinberg.com/category/JavaScript/feed
https://blog.miguelgrinberg.com/category/JavaScript/feed
https://blog.miguelgrinberg.com/category/MicroPython/feed
https://blog.miguelgrinberg.com/category/MicroPython/feed
https://blog.miguelgrinberg.com/category/Microdot/feed
https://blog.miguelgrinberg.com/category/Microdot/feed
https://blog.miguelgrinberg.com/category/Microservices/feed
https://blog.miguelgrinberg.com/category/Microservices/feed
https://blog.miguelgrinberg.com/category/Movie%20Reviews/feed
https://blog.miguelgrinberg.com/category/Movie%20Reviews/feed
https://blog.miguelgrinberg.com/category/OpenStack/feed
https://blog.miguelgrinberg.com/category/OpenStack/feed
https://blog.miguelgrinberg.com/category/Personal/feed
https://blog.miguelgrinberg.com/category/Personal/feed
https://blog.miguelgrinberg.com/category/Photography/feed
https://blog.miguelgrinberg.com/category/Photography/feed
https://blog.miguelgrinberg.com/category/Product%20Reviews/feed
https://blog.miguelgrinberg.com/category/Product%20Reviews/feed
https://blog.miguelgrinberg.com/category/Programming/feed
https://blog.miguelgrinberg.com/category/Programming/feed
https://blog.miguelgrinberg.com/category/Project%20Management/feed
https://blog.miguelgrinberg.com/category/Project%20Management/feed

© 2012-2024 by Miguel Grinberg. All rights reserved. Questions?

 Python 168

 REST 7

 Rackspace 1
 Raspberry Pi 8
 React 18

 Robotics 6

 Security 12

 Video 22

 WebSocket 2
 Webcast 3

 Windows 1

9/11/24, 5:22 AM How LLMs Work, Explained Without Math - miguelgrinberg.com

https://blog.miguelgrinberg.com/post/how-llms-work-explained-without-math 20/20

mailto:webmaster%20_at_%20miguelgrinberg%20_dot_%20com
https://blog.miguelgrinberg.com/category/Python/feed
https://blog.miguelgrinberg.com/category/Python/feed
https://blog.miguelgrinberg.com/category/REST/feed
https://blog.miguelgrinberg.com/category/REST/feed
https://blog.miguelgrinberg.com/category/Rackspace/feed
https://blog.miguelgrinberg.com/category/Rackspace/feed
https://blog.miguelgrinberg.com/category/Raspberry%20Pi/feed
https://blog.miguelgrinberg.com/category/Raspberry%20Pi/feed
https://blog.miguelgrinberg.com/category/React/feed
https://blog.miguelgrinberg.com/category/React/feed
https://blog.miguelgrinberg.com/category/Robotics/feed
https://blog.miguelgrinberg.com/category/Robotics/feed
https://blog.miguelgrinberg.com/category/Security/feed
https://blog.miguelgrinberg.com/category/Security/feed
https://blog.miguelgrinberg.com/category/Video/feed
https://blog.miguelgrinberg.com/category/Video/feed
https://blog.miguelgrinberg.com/category/WebSocket/feed
https://blog.miguelgrinberg.com/category/WebSocket/feed
https://blog.miguelgrinberg.com/category/Webcast/feed
https://blog.miguelgrinberg.com/category/Webcast/feed
https://blog.miguelgrinberg.com/category/Windows/feed
https://blog.miguelgrinberg.com/category/Windows/feed

